Advertisements
Advertisements
प्रश्न
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
उत्तर
\[\int \sqrt{4 - x^2} dx\]
\[ = \int \sqrt{2^2 - x^2} \text{ dx }\]
\[ = \frac{x}{2}\sqrt{2^2 - x^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x}{2} \right) + C \left( \because \sqrt{a^2 - x^2} = \frac{x}{2}\sqrt{a^2 - x^2} - \frac{a^2}{2} \sin^{- 1} \frac{x}{a} + C \right)\]
\[ = \frac{x}{2}\sqrt{4 - x^2} + 2 \sin^{- 1} \left( \frac{x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`sqrt(ax + b)`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: ∫ |x| dx if x < 0
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(1 + sin2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int (cos2x)/(sin^2x) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int x^3"e"^(x^2) "d"x`
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`