Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
उत्तर
Let I = `int (1)/(x.logx.log(logx)).dx`
= `int(1)/log(logx).(1)/(x.logx).dx`
Put log(log x) = t
∴ `(1)/logx.(1)/x.dx` = dt
∴ `(1)/(x.logx).dx` = dt
∴ I = `int (1)/t dt = log|t| + c`
= log|log (logx)| + c.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Solve: dy/dx = cos(x + y)
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int logx/x "d"x`
`int x^x (1 + logx) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int x/(x + 2) "d"x`
`int cos^7 x "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
`int "cosec"^4x dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`int sin^3x cos^3x dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`