Advertisements
Advertisements
प्रश्न
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
उत्तर
\[\int \sqrt{x^2 - 9} \text{ dx }\]
\[ = \int \sqrt{x^2 - 3^2} \text{ dx}\]
\[ = \frac{x}{2}\sqrt{x^2 - 3^2} - \frac{3^2}{2}\text{ ln} \left| x + \sqrt{x^2 - 3} \right| + C \left( \because \sqrt{x^2 - a^2} = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln } \left| x + \sqrt{x^2 + a^2} \right| + C \right)\]
\[ = \frac{x}{2}\sqrt{x^2 - 9} - \frac{9}{2}\text{ ln } \left| x + \sqrt{x^2 - 9} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
cot x log sin x
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int log ("x"^2 + "x")` dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int sec^6 x tan x "d"x` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int 1/(sinx.cos^2x)dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`