Advertisements
Advertisements
प्रश्न
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
उत्तर
\[\int \sqrt{9 + x^2} \text{ dx }\]
\[ = \int \sqrt{3^2 + x^2} dx \left( \because \sqrt{a^2 + x^2} = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\text{ ln }\left| x + \sqrt{x^2 + a^2} \right| \right)\]
\[ = \frac{x}{2}\sqrt{9 + x^2} + \frac{9}{2}\text{ ln }\left| x + \sqrt{9 + x^2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx