Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
उत्तर
Let I = `int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Let 20 - 12ex = A(3ex - 4) + B `"d"/"dx"`(3ex - 4)
= 3 Aex - 4A + 3Bex
∴ 20 - 12ex = (3A + 3B)ex - 4A
Comparing the coefficients of ex and constant term on both sides, we get
- 4A = 20 and 3A + 3B = - 12
Solving these equations, we get
A = -5 and B = 1
∴ I = `int (-5(3"e"^"x" - 4) + 3"e"^"x")/(3"e"^"x" - 4)`dx
`= - 5 int "dx" + int (3"e"^"x")/(3"e"^"x" - 4)` dx
∴ I = - 5x + log `|(3"e"^"x" - 4)|` + c ....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`e^(2x+3)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`