Advertisements
Advertisements
प्रश्न
Integrate the functions:
`e^(2x+3)`
उत्तर
Let `I = int e^(2x + 3)` dx
Put 2x + 3 = t
2 dx = dt or dx = `1/2` dt
Hence, `I = 1/2 int e^t` dt
`= 1/2 e^t+ C`
`= 1/2 e^(2x + 3) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Solve: dy/dx = cos(x + y)
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).