मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x: 10x9 10x.log1010x+x10 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`

बेरीज

उत्तर

Let I = `int (10x^9  10^x.log10)/(10^x + x^10).dx`

Put 10x + x10 = t

∴ (10x. log 10 + 10x9).dx = dt

∴ I = `int(1)/t dt` = log | t | + c

= log | 10x + x10 | + c.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.17 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int 1/(xsin^2(logx))  "d"x`


`int(log(logx))/x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


Evaluate `int(3x^2 - 5)^2  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int cos^3x  dx` = ______.


Write `int cotx  dx`.


`int (logx)^2/x dx` = ______.


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int (1+x+x^2/(2!))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×