Advertisements
Advertisements
प्रश्न
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
उत्तर
\[\left( e^{\text{ x log}_e a} + e^{\text{ a }\log_e x} \right)dx\]
\[\int\left( e^{ \text{ log a}^x} + e^{ \text{ log x}^a} \right) dx\]
\[ = \int \left( a^x + x^a \right)dx\]
\[ = \frac{a^x}{\log a} + \frac{x^{a + 1}}{a + 1} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int (sin4x)/(cos 2x) "d"x`
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int x/(x + 2) "d"x`
`int dx/(1 + e^-x)` = ______
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`