Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
उत्तर
Let I = `int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`= int 1/sqrt("x"^2 + 2 * 2"x" + 4 - 4 + 29)` dx
`= int 1/(sqrt(("x + 2")^2 + 25)` dx
`= int "dx"/(sqrt(("x + 2")^2 + 5^2)`
`= log |("x + 2") + sqrt(("x + 2")^2 + 5^2)|`+ c
∴ I = `= log |("x + 2") + sqrt("x"^2 + "4x" + 29)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate: `int log ("x"^2 + "x")` dx
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int cos^3x dx` = ______.
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(1+x+x^2/(2!))dx`