Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
उत्तर
Let I = `int 1/(sqrt(3"x"^2 - 5))` dx
`= 1/sqrt3 int 1/sqrt("x"^2 - 5/3)` dx
`= 1/sqrt3 int 1/(sqrt ("x"^2 - (sqrt5/sqrt3)^2))` dx
`= 1/sqrt3 log |"x" + sqrt("x"^2 - (sqrt5/sqrt3)^2)| + "c"_1`
`= 1/sqrt3 log |"x" + sqrt("x"^2 - 5/3)| + "c"_1`
`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 - 5))/sqrt3| + "c"_1`
`= 1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| - 1/sqrt3 log sqrt3 + "c"_1`
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| + "c"`,
where c = `"c"_1 - 1/sqrt3 log sqrt3`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
`int (sin4x)/(cos 2x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int x/(x + 2) "d"x`
`int sin^-1 x`dx = ?
`int1/(4 + 3cos^2x)dx` = ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.