Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
उत्तर
Let I = `int 1/(sqrt("x"^2 -8"x" - 20))` dx
`= int 1/(sqrt ("x"^2 - 2 * 4"x" + 16 - 16 - 20))` dx
`= int "dx"/sqrt(("x - 4")^2 - 36)` dx
`= int "dx"/(sqrt(("x - 4")^2 - 6^2))` dx
`= log |("x - 4") + sqrt(("x - 4")^2 - 6^2)|` + c
∴ I = `log |("x - 4") + sqrt("x"^2 - 8"x" - 20)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Solve: dy/dx = cos(x + y)
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate: `int "e"^sqrt"x"` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int dx/(1 + e^-x)` = ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int x^2/sqrt(1 - x^6)dx` = ______.