Advertisements
Advertisements
प्रश्न
Evaluate the following.
∫ x log x dx
उत्तर
Let I = ∫ x log x dx
`= log "x" int "x" "dx" - int["d"/"dx" (log "x") int "x dx"] "dx"`
`= log "x" * "x"^2/2 - int [1/"x" xx "x"^2/2]` dx
`= "x"^2/2 log "x" - 1/2 int "x dx"`
`= "x"^2/2 log "x" - 1/2 * "x"^2/2 + "c"`
∴ I = `"x"^2/2 log "x" - "x"^2/4 + "c"`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int"e"^(4x - 3) "d"x` = ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`intsqrt(1+x) dx` = ______
`int logx dx = x(1+logx)+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate `int (1 + x + x^2/(2!))dx`