Advertisements
Advertisements
प्रश्न
Evaluate the following : `int x^2.log x.dx`
उत्तर
Let I = `int x^2.logx.dx`
= `int log x.x^2.dx`
= `(logx) int x^2.dx - int[{d/dx (logx) int x^2.dx}].dx`
= `(logx).x^3/(3) - int (1)/x.x^3/(3).dx`
= `x^3/(3) logx - (1)/(3) int x^2.dx`
= `x^3/(3) logx - (1)/(3)(x^3/3) + c`
= `x^3/(9)(3.logx - 1) + c`.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin 3x.
Integrate the function in x log x.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sinx)/(1 + sin x) "d"x`
`int 1/(4x + 5x^(-11)) "d"x`
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(x log x) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int e^x.sin2xdx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int1/(x+sqrt(x)) dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx