मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫14x+5x-11 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int 1/(4x + 5x^(-11))  "d"x`

बेरीज

उत्तर

Let I = `int 1/(4x + 5x^(-11))  "d"x`

= `int 1/(4x + 5/x^11)  "d"x`

= `int x^11/(4x^12 + 5)  "d"x`

Put 4x12 + 5 = t

Differentiating w.r.t. x, we get

4(12)x11dx = dt

∴ x11dx = `1/48  "dt"`

∴ I = `1/48 int "dt"/"t"`

= `1/48 log |"t"| + "c"`

∴ I = `1/48 log |4x^12 + 5| + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Short Answers I

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate : sec3 x w. r. t. x.


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x log 2x.


Integrate the function in x cos-1 x.


Integrate the function in x sec2 x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in e2x sin x.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sinx)/(1 + sin x)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Solution of the equation `xdy/dx=y log y` is ______


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×