Advertisements
Advertisements
प्रश्न
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
उत्तर
Let `I = int (e^x(1 + sin x))/(1 + cos x) dx`
`I = int e^x [(1 + sin x/2 cos x/2)/(2 cos^2 x/2)] dx`
`= inte^x [1/2 sec^2 x/2 + tan x/2] dx`
`I = inte^x [tan x/2 + 1/2 sec^2 x/2] dx`
`= e^x {tan x/2 + [d/dx(tan x/2)]}`
`= e^x * tan (x/2) + C` `...[∵ int e^x (f(x) + f' (x)) dx = e^x f (x) + C]`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x2 log x.
Integrate the function in x cos-1 x.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int (sinx)/(1 + sin x) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int(x + 1/x)^3 dx` = ______.
`int"e"^(4x - 3) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int logx dx = x(1+logx)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate `int(1 + x + x^2/(2!))dx`.