Advertisements
Advertisements
प्रश्न
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
पर्याय
`(1 - x^2)^(-1/2) + c`
`(1 - x^2)^(1/2) + c`
`tan^m x/sqrt(1 - x^2) + c`
`- sqrt(1 - x^2) + c`
उत्तर
`-sqrt(1 - x^2) + c`
`["Hint" : sin^-1x = tan^-1 (x/sqrt(1 - x^2))].`
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1/x - 1/x^2)`.
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int 1/(4x + 5x^(-11)) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
Solve: `int sqrt(4x^2 + 5)dx`
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`intsqrt(1+x) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`inte^(xloga).e^x dx` is ______
`int logx dx = x(1+logx)+c`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`