Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
उत्तर
Given differential equation is `e^((dy)/(dx)) = x^2`
Taking log both sides, we get
`(dy)/(dx) loge` = 2 logx
⇒ `(dy)/(dx)` = 2 logx ...[∵ loge = 1]
⇒ dy = 2 logx dx
On integrating both sides, we get
`intdy = 2intlogxdx`
⇒ y = `2int1.logxdx`
⇒ y = `[logx int1dx - int d/(dx) (logx)(int1.dx)dx]`
⇒ y = `2[logx(x) - int1/x (x)dx]` ...[Using integration by parts]
⇒ y = 2[xlogx – x] + C
⇒ y = 2x(logx – 1) + C
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x tan-1 x.
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int (sinx)/(1 + sin x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int(1-x)^-2 dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`