English

Find the general solution of the differential equation: edydx=x2. - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.

Sum

Solution

Given differential equation is `e^((dy)/(dx)) = x^2`

Taking log both sides, we get

`(dy)/(dx) loge` = 2 logx

⇒ `(dy)/(dx)` = 2 logx  ...[∵ loge = 1]

⇒ dy = 2 logx dx

On integrating both sides, we get

`intdy = 2intlogxdx`

⇒ y = `2int1.logxdx`

⇒ y = `[logx int1dx - int  d/(dx) (logx)(int1.dx)dx]`

⇒ y = `2[logx(x) - int1/x (x)dx]` ...[Using integration by parts]

⇒ y = 2[xlogx – x] + C

⇒ y = 2x(logx – 1) + C

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Outside Delhi Set 1

RELATED QUESTIONS

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in (x2 + 1) log x.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : log (x2 + 1)


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int logx/(1 + logx)^2  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


`inte^(xloga).e^x dx` is ______


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate `int tan^-1x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×