Advertisements
Advertisements
Question
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solution
Given differential equation is `e^((dy)/(dx)) = x^2`
Taking log both sides, we get
`(dy)/(dx) loge` = 2 logx
⇒ `(dy)/(dx)` = 2 logx ...[∵ loge = 1]
⇒ dy = 2 logx dx
On integrating both sides, we get
`intdy = 2intlogxdx`
⇒ y = `2int1.logxdx`
⇒ y = `[logx int1dx - int d/(dx) (logx)(int1.dx)dx]`
⇒ y = `2[logx(x) - int1/x (x)dx]` ...[Using integration by parts]
⇒ y = 2[xlogx – x] + C
⇒ y = 2x(logx – 1) + C
RELATED QUESTIONS
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in (x2 + 1) log x.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (x2 + 1)
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
`int logx/(1 + logx)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find `int_0^1 x(tan^-1x) "d"x`
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`inte^(xloga).e^x dx` is ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate `int tan^-1x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`int x sqrt(1 + x^2) dx`