Advertisements
Advertisements
Question
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Options
`(1 + "x")^-1` + c
`(1 - "x")^-1` + c
`(1 - "x")^-1 - 1` + c
`(1 - "x")^-1 + 1` + c
Solution
`(1 - "x")^-1` + c
Explanation:
`int (1 - "x")^(-2) "dx" = (1 - "x")^-1/(- 1 xx -1)` + c
`= (1 - "x")^-1` + c
APPEARS IN
RELATED QUESTIONS
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x log x.
Integrate the function in (sin-1x)2.
Integrate the function in x sec2 x.
Integrate the function in tan-1 x.
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Find: `int e^x.sin2xdx`
`int(logx)^2dx` equals ______.
`int1/sqrt(x^2 - a^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`