English

Choose the correct options from the given alternatives : ∫1x+x5⋅dx = f(x) + c, then ∫x4x+x5⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct options from the given alternatives :

1x+x5dx = f(x) + c, then x4x+x5dx =

Options

  • log x – f(x) + c

  • f(x) + log x + c

  • f(x) – log  x + c

  • 15x5f(x)+c

MCQ

Solution

log x – f(x) + c

[Hint: x4x+x5dx=(x4+1)-1x(x4+1)dx

= (1x-1x+x5)dx

= log x – f(x) + c].

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 148]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.02 | Page 148

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If -π2π2sin4xsin4x+cos4xdx, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


1xlogxdx=...............

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


If u and v are two functions of x then prove that

uvdx=uvdx-[dudxvdx]dx

Hence evaluate, xexdx


Evaluate 0πe2x.sin(π4+x)dx


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in xcos-1x1-x2.


Integrate the function in (x2 + 1) log x.


Integrate the function in sin-1(2x1+x2).


x2ex3dx equals: 


Evaluate the following : x2sin3x dx


Evaluate the following : x3.tan-1x.dx


Evaluate the following : x3.logx.dx


Evaluate the following : e2x.cos3x.dx


Evaluate the following: x.sin-1x.dx


Evaluate the following : x2cos-1xdx


Evaluate the following : cosx.dx


Evaluate the following : sin(logx)2x.log.x.dx


Evaluate the following : logxx.dx


Integrate the following functions w.r.t. x : e2x.sin3x


Integrate the following functions w.r.t.x:

e-xcos2x


Integrate the following functions w.r.t. x : x2.a2-x6


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : [x(x+1)2].ex


Integrate the following functions w.r.t. x : log(1+x)(1+x)


Choose the correct options from the given alternatives :

tan(sin-1x)dx =


Choose the correct options from the given alternatives :

x-sinx1-cosxdx =


If f(x) = sin-1x1-x2,g(x)=esin-1x, then f(x)g(x)dx = ______.


Choose the correct options from the given alternatives :

sin(logx)dx =


Integrate the following w.r.t.x : xsec(x32)tan(x32)


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

x2e4xdx


Evaluate the following.

x3ex2dx


Evaluate: dx3-2x-x2


Evaluate: dx9x2-25


Evaluate: dxx[(logx)2+4logx-1]


sin(x-a)cos(x+b) dx


Choose the correct alternative:

x23x3dx =


Choose the correct alternative:

dx(x-8)(x+7) =


(x+1x)3dx = ______.


1x2-a2 dx = ______ + c


x2+x-6(x-2)(x-1) dx = x + ______ + c


Evaluate 1xlogx dx


exx(x+1)2 dx


[logx-11+(logx)2]2dx = ?


∫ log x · (log x + 2) dx = ?


Find 01x(tan-1x) dx


Evaluate the following:

0πxlogsinxdx


Find the general solution of the differential equation: edydx=x2.


1x2-a2dx = ______.


Solve: 4x2+5dx


If 2e5x+e4x-4e3x+4e2x+2ex(e2x+4)(e2x-1)2dx=tan-1(exa)-1b(e2x-1)+C, where C is constant of integration, then value of a + b is equal to ______.


If x+(cos-13x)21-9x2dx=1α(1-9x2+(cos-13x)β)+C, where C is constant of integration , then (α + 3β) is equal to ______.


Find sin-1x(1-x2)3/2dx.


Evaluate :

4x-6(x2-3x+5)32 dx


Evaluate the following.

x3ex2dx


3x21+x3dx=1+x3+c


1x+x dx = ______


The integrating factor of ylogy.dxdy+x-logy=0 is ______.


Evaluate the following.

x31+x4dx


Evaluate:

(logx)2dx


Prove that x2-a2dx=x2x2-a2-a22log(x+x2-a2)+c


Complete the following activity:

02dx4+x-x2

= 02dx-x2++

= 02dx-x2+x+14-+4

= 02dx(x-12)2-()2

= 117log(20+41720-417)


Evaluate the following.

x31+x4dx


Evaluate the following.

x3ex2dx


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

x3ex2dx 


Evaluate the following.

x2e4xdx


The value of ax.exdx equals


Evaluate:

excosec x(1-cotx)dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.