Advertisements
Advertisements
Question
`int 1/sqrt(x^2 - a^2)dx` = ______.
Solution
`int 1/sqrt(x^2 - a^2)dx` = `bb(underline(log|x + sqrt(x^2 - a^2)| + c)`.
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x cos-1 x.
Find :
`∫(log x)^2 dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
`int "e"^x x/(x + 1)^2 "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)