Advertisements
Advertisements
Question
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Solution
Let I = `int "x"^3 "e"^("x"^2)`dx
`= int "x"^2 * "x" * "e"^("x"^2)` dx
Put x2 = t
∴ `"2x" * "dx" = "dt"`
∴ x dx = `"dt"/2`
∴ I = `1/2 int "te"^"t"` dt
`= 1/2 ["t" int "e"^"t" "dt" - int ["d"/"dt" ("t") int "e"^"t" "dt"] "dt"]`
`= 1/2 ["te"^"t" - int 1 * "e"^"t" "dt"]`
`= 1/2 ("te"^"t" - "e"^"t") + "c" = 1/2 "e"^"t" ("t - 1")` + c
∴ I = `1/2 "e"^("x"^2) ("x"^2 - 1)` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the function in x sin-1 x.
Integrate the function in (sin-1x)2.
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int 1/(4x + 5x^(-11)) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)