Advertisements
Advertisements
Question
Evaluate `int 1/(4x^2 - 1) "d"x`
Solution
Let I = `int ("d"x)/(4x^2 - 1)`
= `1/4 int ("d"x)/(x^2 - 1/4)`
= `1/4 int ("d"x)/(x^2 - (1/2)^2`
= `1/4 xx 1/(2 xx 1/2) log |(x - 1/2)/(x + 1/2)| + "c"`
∴ I = `1/4 log|(2x - 1)/(2x + 1)| + "c"`
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin 3x.
Integrate the function in x sin-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
∫ x log x dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int(1-x)^-2 dx` = ______
The value of `inta^x.e^x dx` equals