Advertisements
Advertisements
Question
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Solution
Let I = `int t^2/(t + 1)^2*dt`
= `int ((t^3 + 1) - 1)/(t + 1)^2*dt`
= `int ((t + 1)(t^2 - t + 1) - 1)/(t + 1)^2*dt`
= `int [(t^2 - t + 1)/(t + 1) - (1)/((t + 1^2))]*dt`
= `int [((t + 1)(t - 2) + 3)/(t + 1) - (1)/((t + 1)^2)]*dt`
= `int[t - 2 + 3/(t + 1) - 1/((t + 1)^2)]*dt`
= `int t*dt - 2 int 1*dt + 3 int (1)/(t + 1)*dt - int (1)/((t + 1)^2)*dt`
= `t^2/(2) - 2t + 3|log|t + 1| - ((t + 1)-1)/((-1)) + c`
= `t^2/(2) - 2t + 3log|t + 1| + 1/(t + 1) + c`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
Integrate the function in x log x.
Integrate the function in x2 log x.
Integrate the function in x sin-1 x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in x sec2 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(4x^2 - 1) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int 1/sqrt(x^2 - a^2)dx` = ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(1-x)^-2 dx` = ______
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^2e^(4x)dx`
The value of `inta^x.e^x dx` equals