Advertisements
Advertisements
Question
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Options
cot x + cosec x
cot2 x
cot x
cosec x
Solution
If ∫(cot x – cosec2x)exdx = ex f(x) + c then f(x) will be cot x.
Explanation:
∫(cot x – cosec2x)ex dx = ex f(x) + c
Then, ∫(cot x – cosec2x)ex dx
= ∫ex cot x dx – ∫ex cosec2 x dx
On integrating by parts
= `cot x int e^x dx - int d/(dx) cot x int e^x dx - int e^x "cosec"^2 dx + c`
= ex cot x + ∫ex cosec2x dx – ∫ex cosec2 dx + c
= ex cot x + c
Hence, f(x) = cot x.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in e2x sin x.
Evaluate the following : `int cos(root(3)(x)).dx`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int1/(x+sqrt(x)) dx` = ______
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.