Advertisements
Advertisements
Question
Evaluate the following : `int cos(root(3)(x)).dx`
Solution
Let I = `int cos(root(3)(x)).dx`
Put `root(3)(x)` = t
∴ x = t3
∴ dx = 3t2.dt
∴ I = `int 3t^2 cos t.dt`
= `3t^2 int cos t.dt - int [d/dt (3t)^2 int cos t.dt].dt`
= `3t^2 sint - int 6t sint.dt`
= `3t^2 sint - [6t sin t.dt - int {d/dt (6t) int sin t.dt }.dt]`
= `3t^2 sint - [6t (- cos t) - int 6( - cos t).dt]`
= 3t2 sin t + 6t cos t – 6 sin t + c
= 3(t2 – 2) sin t + 6t cos t + c
= `3(x^(2/3) - 2) sin(root(3)(x)) + 6root(3)(x) cos(root(3)(x)) + c`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in `x^2e^x`.
Integrate the function in x sin-1 x.
Integrate the function in x cos-1 x.
Integrate the function in x (log x)2.
Integrate the function in ex (sinx + cosx).
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int 1/(4x + 5x^(-11)) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int 1/x "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate `int (1 + x + x^2/(2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.