English

Find: ∫2x(x2+1)(x2+2)dx - Mathematics

Advertisements
Advertisements

Question

Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`

Sum

Solution

Let I = `int (2x)/((x^2 + 1)(x^2 + 2)) dx`

Let `1/((x^2 + 1)(x^2 + 2)) = A/(x^2 + 1) + B/(x^2 + 2)`

⇒ 1 = A(x2 + 2) + B(x2 + 1)

⇒ 1 = (A + B)x2 + (2A + B)

On comparing both sides, we get

A + B = 0 and 2A + B = 0

On solving the above equations, we get

A = 1 and B = –1

∴ I = `int(1/(x^2 + 1) - 1/(x^2 + 2))2xdx`

I = `int (2x)/(x^2 + 1) dx - int (2x)/(x^2 + 2) dx`

I = `log|x^2 + 1| - log|x^2 + 2| + C`

I = `log|(x^2 + 1)/(x^2 + 2)| + C`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Delhi Set 1

RELATED QUESTIONS

Integrate the function in ex (sinx + cosx).


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`intsqrt(1+x)  dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate:

`int (logx)^2 dx`


Evaluate the following.

`intx^2e^(4x)dx`


The value of `inta^x.e^x dx` equals


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×