Advertisements
Advertisements
Question
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Solution
Let I = `int "dx"/sqrt(4"x"^2 - 5)`
`= int 1/(sqrt (4("x"^2 - 5/4)))`dx
`= 1/2 int 1/(sqrt("x"^2 - ((sqrt5)/2)^2))` dx
`= 1/2 log |"x" + sqrt("x"^2 - (sqrt5/2)^2)|` + c
∴ I = `1/2 log |"x" + sqrt("x"^2 - 5/4)|` + c
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x cos-1 x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in e2x sin x.
Evaluate the following : `int x tan^-1 x .dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: ∫ (log x)2 dx
`int cot "x".log [log (sin "x")] "dx"` = ____________.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int (logx)^2 dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`