English

Integrate the function in x cos-1 x. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in x cos-1 x.

Sum

Solution

Let `I = int x cos^-1 x  dx = int cos^-1 x*x dx`

`= cos^-1 x* int x  dx - int [d/dx (cos^-1 x) int x  dx]  dx`

`= cos^-1 x (x^2/2) - int (-1)/ sqrt (1 - x^2) (x^2/2) dx`

`= x^2/2 cos^-1 x + 1/2 int x^2/ sqrt (1 - x^2)  dx`

∴ `I = x^2/2 cos^-1 x+ 1/2 I_1`             ....(i)

Where `I_1 = int x^2/ sqrt (1 - x^2)  dx`

Put x = cos θ 

⇒ dx = -sinθ dθ 

∴ `I_1 = int (cos^2 theta (-sin theta))/sqrt (1 - cos^2 theta) d theta`

`= - int cos^2 theta d theta = - 1/2 int  (1 + cos 2 theta) d theta`

`= -1/2 (theta + (sin 2 theta)/2) + C`

`= -1/2 (theta + 1/2 xx 2 sin theta cos theta) + C`

`= - 1/2 (theta + cos theta sqrt (1 - cos^2 theta)) + C`

`= - 1/2 (cos^-1 x + x sqrt (1 - x^2)) + C`             ....(ii)

From (i) and (ii), we get

`I = (2x^2 - 1) (cos^-1 x)/4 - x/4 sqrt (1 - x^2) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 9 | Page 327

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


Integrate the function in `x^2e^x`.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in x sec2 x.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : e2x sin x cos x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int (sinx)/(1 + sin x)  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int 1/sqrt(x^2 - a^2)dx` = ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(logcosx)dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×