English

NCERT solutions for Mathematics [English] Class 12 chapter 7 - Integrals [Latest edition]

Advertisements

Chapters

NCERT solutions for Mathematics [English] Class 12 chapter 7 - Integrals - Shaalaa.com
Advertisements

Solutions for Chapter 7: Integrals

Below listed, you can find solutions for Chapter 7 of CBSE, Karnataka Board PUC NCERT for Mathematics [English] Class 12.


EXERCISE 7.1EXERCISE 7.2EXERCISE 7.3EXERCISE 7.4EXERCISE 7.5EXERCISE 7.6EXERCISE 7.7EXERCISE 7.8EXERCISE 7.9EXERCISE 7.10Miscellaneous Exercise
EXERCISE 7.1 [Pages 234 - 235]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.1 [Pages 234 - 235]

EXERCISE 7.1 | Q 1. | Page 234

Find an anti derivative (or integral) of the following function by the method of inspection.

sin 2x

EXERCISE 7.1 | Q 2. | Page 234

Find an anti derivative (or integral) of the following function by the method of inspection.

Cos 3x

EXERCISE 7.1 | Q 3. | Page 234

Find an anti derivative (or integral) of the following function by the method of inspection.

e2x

EXERCISE 7.1 | Q 4. | Page 234

Find an anti derivative (or integral) of the following function by the method of inspection.

(axe + b)2

EXERCISE 7.1 | Q 5. | Page 234

Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x

EXERCISE 7.1 | Q 6. | Page 234

Find the following integrals:

(4e3x+1)

EXERCISE 7.1 | Q 7. | Page 234

Find the following integrals:

x2(1-1x2)dx

EXERCISE 7.1 | Q 8. | Page 234

Find the following integrals:

(ax2+bx+c)dx

EXERCISE 7.1 | Q 9. | Page 234

Find the following integrals:

(2x2+ex)dx

EXERCISE 7.1 | Q 10. | Page 234

Find the following integrals:

(x -1x)2dx

EXERCISE 7.1 | Q 11. | Page 234

Find the following integrals:

x3+5x2  -4x2dx

EXERCISE 7.1 | Q 12. | Page 234

Find the following integrals:

x3+3x+4xdx

EXERCISE 7.1 | Q 13. | Page 234

Find the following integrals:

x3-x2+x-1x-1dx

EXERCISE 7.1 | Q 14. | Page 234

Find the following integrals:

(1-x)xdx

EXERCISE 7.1 | Q 15. | Page 235

Find the following integrals:

x(3x2+2x+3)dx

EXERCISE 7.1 | Q 16. | Page 235

Find the following integrals:

(2x-3cosx+ex)dx

EXERCISE 7.1 | Q 17. | Page 235

Find the following integrals:

(2x2-3sinx+5x)dx

EXERCISE 7.1 | Q 18. | Page 235

Find the following integrals:

secx(secx+tanx)dx

EXERCISE 7.1 | Q 19. | Page 235

Find the following integrals:

sec2xcosec2xdx

EXERCISE 7.1 | Q 20. | Page 235

Find the following integrals:

2-3sinxcos2xdx.

Choose the correct answer in Exercises 21 and 22.

EXERCISE 7.1 | Q 21. | Page 235

The anti derivative of (x+1x) equals:

  • 13x13+2x12+C

  • 23x23+12x2+C

  • 23x32+2x12+C

  • 32x32+12x12+C

EXERCISE 7.1 | Q 22. | Page 235

If ddxf(x)=4x3-3x4 such that f(2) = 0, then f(x) is ______.

  • x4+1x3-1298

  • x3+1x4+1298

  • x4+1x3+1298

  • x3+1x4-1298

EXERCISE 7.2 [Pages 240 - 241]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.2 [Pages 240 - 241]

EXERCISE 7.2 | Q 1. | Page 240

Integrate the functions:

2x1+x2

EXERCISE 7.2 | Q 2. | Page 240

Integrate the functions:

(logx)2x

EXERCISE 7.2 | Q 3. | Page 240

Integrate the functions:

1x+xlogx

EXERCISE 7.2 | Q 4. | Page 240

Integrate the functions:

sin x ⋅ sin (cos x)

EXERCISE 7.2 | Q 5. | Page 240

Integrate the functions:

sin (ax + b) cos (ax + b)

EXERCISE 7.2 | Q 6. | Page 240

Integrate the functions:

ax+b

EXERCISE 7.2 | Q 7. | Page 240

Integrate the functions:

xx+2

EXERCISE 7.2 | Q 8. | Page 240

Integrate the functions:

x1+2x2

EXERCISE 7.2 | Q 9. | Page 240

Integrate the functions:

(4x + 2) x2+x+1

EXERCISE 7.2 | Q 10. | Page 240

Integrate the functions:

1x-x

EXERCISE 7.2 | Q 11. | Page 240

Integrate the functions:

xx+4, x > 0 

EXERCISE 7.2 | Q 12. | Page 240

Integrate the functions:

(x3-1)13x5

EXERCISE 7.2 | Q 13. | Page 240

Integrate the functions:

x2(2+3x3)3

EXERCISE 7.2 | Q 14. | Page 240

Integrate the functions:

1x(logx)m, x>0,m1

EXERCISE 7.2 | Q 15. | Page 240

Integrate the functions:

x9-4x2

EXERCISE 7.2 | Q 16. | Page 240

Integrate the functions:

e2x+3

EXERCISE 7.2 | Q 17. | Page 240

Integrate the functions:

xex2

EXERCISE 7.2 | Q 18. | Page 240

Integrate the functions:

etan-1x1+x2

EXERCISE 7.2 | Q 19. | Page 240

Integrate the functions:

e2x-1e2x+1

EXERCISE 7.2 | Q 20. | Page 240

Integrate the functions:

e2x- e-2xe2x+e-2x

EXERCISE 7.2 | Q 21. | Page 241

Integrate the functions:

tan2(2x – 3)

EXERCISE 7.2 | Q 22. | Page 241

Integrate the functions:

sec2(7 – 4x)

EXERCISE 7.2 | Q 23. | Page 241

Integrate the functions:

sin-1x1-x2

EXERCISE 7.2 | Q 24. | Page 241

Integrate the functions:

2cosx-3sinx6cosx+4sinx

EXERCISE 7.2 | Q 25. | Page 241

Integrate the functions:

1cos2x(1-tanx)2

EXERCISE 7.2 | Q 26. | Page 241

Integrate the functions:

cosxx

EXERCISE 7.2 | Q 27. | Page 241

Integrate the functions:

sin2xcos2x

EXERCISE 7.2 | Q 28. | Page 241

Integrate the functions:

cosx1+sinx

EXERCISE 7.2 | Q 29. | Page 241

Integrate the functions:

cot x log sin x

EXERCISE 7.2 | Q 30. | Page 241

Integrate the functions:

sinx1+cosx

EXERCISE 7.2 | Q 31. | Page 241

Integrate the functions:

sinx(1+cosx)2

EXERCISE 7.2 | Q 32. | Page 241

Integrate the functions:

11+cotx

EXERCISE 7.2 | Q 33. | Page 241

Integrate the functions:

11-tanx

EXERCISE 7.2 | Q 34. | Page 241

Integrate the functions:

tanxsinxcosx

EXERCISE 7.2 | Q 35. | Page 241

Integrate the functions:

(1+logx)2x

EXERCISE 7.2 | Q 36. | Page 241

Integrate the functions:

(x+1)(x+logx)2x

EXERCISE 7.2 | Q 37. | Page 241

Integrate the functions:

x3sin(tan-1x4)1+x8

Choose the correct answer in Exercises 38 and 39.

EXERCISE 7.2 | Q 38. | Page 241

10x9+10xloge10x10+10x dx equals:

  • 10x - x10 + C

  • 10x + x10 + C

  • (10x - x10)-1 + C

  • log (10x + x10) + C

EXERCISE 7.2 | Q 39. | Page 241

dxsin2xcos2x equals:

  • tan x + cot x + C

  • tan x - cot x + C

  • tan x cot x + C

  • tan x - cot 2x + C

EXERCISE 7.3 [Page 243]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.3 [Page 243]

EXERCISE 7.3 | Q 1. | Page 243

Find the integrals of the function:

sin2 (2x + 5)

EXERCISE 7.3 | Q 2. | Page 243

Find the integrals of the function:

sin 3x cos 4x

EXERCISE 7.3 | Q 3. | Page 243

Find the integrals of the function:

cos 2x cos 4x cos 6x

EXERCISE 7.3 | Q 4. | Page 243

Find the integrals of the function:

sin3 (2x + 1)

EXERCISE 7.3 | Q 5. | Page 243

Find the integrals of the function:

sin3 x cos3 x

EXERCISE 7.3 | Q 6. | Page 243

Find the integrals of the function:

sin x sin 2x sin 3x

EXERCISE 7.3 | Q 7. | Page 243

Find the integrals of the function:

sin 4x sin 8x

EXERCISE 7.3 | Q 8. | Page 243

Find the integrals of the function:

1-cosx1+ cosx

EXERCISE 7.3 | Q 9. | Page 243

Find the integrals of the function:

cosx1+cosx

EXERCISE 7.3 | Q 10. | Page 243

Find the integrals of the function:

sin4 x

EXERCISE 7.3 | Q 11. | Page 243

Find the integrals of the function:

cos4 2x

EXERCISE 7.3 | Q 12. | Page 243

Find the integrals of the function:

sin2x1+cosx

EXERCISE 7.3 | Q 13. | Page 243

Find the integrals of the function:

cos2x-cos2αcosx-cosα

EXERCISE 7.3 | Q 14. | Page 243

Find the integrals of the function:

cosx- sinx1+sin2x

EXERCISE 7.3 | Q 15. | Page 243

Find the integrals of the function:

tan3 2x sec 2x

EXERCISE 7.3 | Q 16. | Page 243

Find the integrals of the function:

tan4x

EXERCISE 7.3 | Q 17. | Page 243

Find the integrals of the function:

sin3x+cos3xsin2xcos2x

EXERCISE 7.3 | Q 18. | Page 243

Find the integrals of the function:

cos2x+2sin2xcos2x

EXERCISE 7.3 | Q 19. | Page 243

Find the integrals of the function:

1sinxcos3x

EXERCISE 7.3 | Q 20. | Page 243

Find the integrals of the function:

cos2x(cosx+sinx)2

EXERCISE 7.3 | Q 21. | Page 243

Find the integrals of the function:

sin−1 (cos x)

EXERCISE 7.3 | Q 22. | Page 243

Find the integrals of the function:

1cos(x-a)cos(x-b)

Choose the correct answer in Exercises 23 and 24.

EXERCISE 7.3 | Q 23. | Page 243

sin2x-cos2xsin2xcos2xdx is equal to ______.

  • tan x + cot x + C

  • tan x + cosec x + C

  • − tan x + cot x + C

  • tan x + sec x + C

EXERCISE 7.3 | Q 24. | Page 243

ex(1+x)cos2(exx)dx equals ______.

  • − cot (exx) + C

  • tan (xex) + C

  • tan (ex) + C

  • cot (ex) + C

EXERCISE 7.4 [Pages 251 - 252]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.4 [Pages 251 - 252]

EXERCISE 7.4 | Q 1. | Page 251

Integrate the function 3x2x6+1

EXERCISE 7.4 | Q 2. | Page 251

Integrate the function 11+4x2

EXERCISE 7.4 | Q 3. | Page 251

Integrate the function 1(2-x)2+1

EXERCISE 7.4 | Q 4. | Page 251

Integrate the function 19-25x2

EXERCISE 7.4 | Q 5. | Page 251

Integrate the function 3x1+2x4

EXERCISE 7.4 | Q 6. | Page 251

Integrate the function x21-x6

EXERCISE 7.4 | Q 7. | Page 251

Integrate the function x-1x2-1

EXERCISE 7.4 | Q 8. | Page 251

Integrate the function x2x6+a6

EXERCISE 7.4 | Q 9. | Page 251

Integrate the function sec2xtan2x+4

EXERCISE 7.4 | Q 10. | Page 252

Integrate the function 1x2+2x+2

EXERCISE 7.4 | Q 11. | Page 252

Integrate the function 19x2+6x+5

EXERCISE 7.4 | Q 12. | Page 252

Integrate the function 17-6x-x2

EXERCISE 7.4 | Q 13. | Page 252

Integrate the function 1(x-1)(x-2)

EXERCISE 7.4 | Q 14. | Page 252

Integrate the function 18+3x -x2

EXERCISE 7.4 | Q 15. | Page 252

Integrate the function 1(x-a)(x-b)

EXERCISE 7.4 | Q 16. | Page 252

Integrate the function 4x+12x2+x-3

EXERCISE 7.4 | Q 17. | Page 252

Integrate the function x+2x2-1

EXERCISE 7.4 | Q 18. | Page 252

Integrate the function 5x-21+2x+3x2

EXERCISE 7.4 | Q 19. | Page 252

Integrate the function 6x+7(x-5)(x-4)

EXERCISE 7.4 | Q 20. | Page 252

Integrate the function x+24x-x2

EXERCISE 7.4 | Q 21. | Page 252

Integrate the function x+2x2+2x+3

EXERCISE 7.4 | Q 22. | Page 252

Integrate the function x+3x2-2x-5

EXERCISE 7.4 | Q 23. | Page 252

Integrate the function 5x+3x2+4x+10

Choose the correct answer in Exercises 24 and 25.

EXERCISE 7.4 | Q 24. | Page 252

dxx2+2x+2 equals:

  • x tan-1(x + 1) + C

  • tan-1(x + 1) + C

  • (x + 1) tan-1 x + C

  • tan-1 x + C

EXERCISE 7.4 | Q 25. | Page 252

dx9x-4x2 equals:

  • 19 sin-1(9x-88)+C

  • 12 sin-1(8x-99)+C

  • 13 sin-1(9x-88)+C

  • 12 sin-1(9x-89)+C

EXERCISE 7.5 [Pages 258 - 259]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.5 [Pages 258 - 259]

EXERCISE 7.5 | Q 1. | Page 258

Integrate the rational function:

x(x+1)(x+2)

EXERCISE 7.5 | Q 2. | Page 258

Integrate the rational function:

1x2-9

EXERCISE 7.5 | Q 3. | Page 258

Integrate the rational function:

3x-1(x-1)(x-2)(x-3)

EXERCISE 7.5 | Q 4. | Page 258

Integrate the rational function:

x(x-1)(x-2)(x-3)

EXERCISE 7.5 | Q 5. | Page 258

Integrate the rational function:

2xx2+3x+2

EXERCISE 7.5 | Q 6. | Page 258

Integrate the rational function:

1-x2x(1-2x)

EXERCISE 7.5 | Q 7. | Page 258

Integrate the rational function:

x(x2+1)(x-1)

EXERCISE 7.5 | Q 8. | Page 258

Integrate the rational function:

x(x-1)2(x+2)

EXERCISE 7.5 | Q 9. | Page 258

Integrate the rational function:

3x+5x3-x2-x+1

EXERCISE 7.5 | Q 10. | Page 258

Integrate the rational function:

2x-3(x2-1)(2x+3)

EXERCISE 7.5 | Q 11. | Page 258

Integrate the rational function:

5x(x+1)(x2-4)

EXERCISE 7.5 | Q 12. | Page 258

Integrate the rational function:

x3+x+1x2-1

EXERCISE 7.5 | Q 13. | Page 258

Integrate the rational function:

2(1-x)(1+x2)

EXERCISE 7.5 | Q 14. | Page 258

Integrate the rational function:

3x-1(x+2)2

EXERCISE 7.5 | Q 15. | Page 258

Integrate the rational function:

1x4-1

EXERCISE 7.5 | Q 16. | Page 258

Integrate the rational function:

1x(xn+1) [Hint: multiply numerator and denominator by xn − 1 and put xn = t]

EXERCISE 7.5 | Q 17. | Page 258

Integrate the rational function:

cosx(1-sinx)(2-sinx) [Hint: Put sin x = t]

EXERCISE 7.5 | Q 18. | Page 259

Integrate the rational function:

(x2+1)(x2+2)(x2+3)(x2+4)

EXERCISE 7.5 | Q 19. | Page 259

Integrate the rational function:

2x(x2+1)(x2+3)

EXERCISE 7.5 | Q 20. | Page 259

Integrate the rational function:

1x(x4-1)

EXERCISE 7.5 | Q 21. | Page 259

Integrate the rational function:

1ex-1[Hint: Put ex = t]

Choose the correct answer in each of the Exercises 22 and 23

EXERCISE 7.5 | Q 22. | Page 259

xdx(x-1)(x-2) equals:

  • log|(x-1)2x-2|+C

  • log|(x-2)2x-1|+C

  • log|(x-12x-2)|+C

  • log|(x - 1)(x - 2) + C

EXERCISE 7.5 | Q 23. | Page 259

dxx(x2+1) equals:

  • log|x|-12log|x2+1|+C

  • log|x|+12log|x2+1|+C

  • -log|x|+12log|x2+1|+C

  • 12log|x|+log(x2+1)+C

EXERCISE 7.6 [Pages 263 - 264]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.6 [Pages 263 - 264]

EXERCISE 7.6 | Q 1. | Page 263

Integrate the function in x sin x.

EXERCISE 7.6 | Q 2. | Page 263

Integrate the function in x sin 3x.

EXERCISE 7.6 | Q 3. | Page 263

Integrate the function in x2ex.

EXERCISE 7.6 | Q 4. | Page 263

Integrate the function in x log x.

EXERCISE 7.6 | Q 5. | Page 263

Integrate the function in x log 2x.

EXERCISE 7.6 | Q 6. | Page 263

Integrate the function in xlog x.

EXERCISE 7.6 | Q 7. | Page 263

Integrate the function in x sin-1 x.

EXERCISE 7.6 | Q 8. | Page 263

Integrate the function in x tan-1 x.

EXERCISE 7.6 | Q 9. | Page 263

Integrate the function in x cos-1 x.

EXERCISE 7.6 | Q 10. | Page 263

Integrate the function in (sin-1x)2.

EXERCISE 7.6 | Q 11. | Page 263

Integrate the function in xcos-1x1-x2.

EXERCISE 7.6 | Q 12. | Page 263

Integrate the function in x sec2 x.

EXERCISE 7.6 | Q 13. | Page 263

Integrate the function in tan-1 x.

EXERCISE 7.6 | Q 14. | Page 263

Integrate the function in x (log x)2.

EXERCISE 7.6 | Q 15. | Page 263

Integrate the function in (x2 + 1) log x.

EXERCISE 7.6 | Q 16. | Page 264

Integrate the function in ex (sinx + cosx).

EXERCISE 7.6 | Q 17. | Page 264

Integrate the function in xex(1+x)2.

EXERCISE 7.6 | Q 18. | Page 264

Integrate the function in ex1+sinx1+cosx.

EXERCISE 7.6 | Q 19. | Page 264

Integrate the function in ex(1x-1x2).

EXERCISE 7.6 | Q 20. | Page 264

Integrate the function in (x-3)ex(x-1)3.

EXERCISE 7.6 | Q 21. | Page 264

Integrate the function in e2x sin x.

EXERCISE 7.6 | Q 22. | Page 264

Integrate the function in sin-1(2x1+x2).

Choose the correct answer in Exercises 23 and 24.

EXERCISE 7.6 | Q 23. | Page 264

x2ex3dx equals: 

  • 13 ex3+C 

  • 13 ex2+C 

  • 12 ex3+C 

  • 12 ex2+C 

EXERCISE 7.6 | Q 24. | Page 264

exsecx(1+  tanx)dx equals:

  • ex cos x + C

  • ex sec x + C

  • ex sin x + C

  • ex tan x + C

EXERCISE 7.7 [Page 266]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.7 [Page 266]

EXERCISE 7.7 | Q 1. | Page 266

Integrate the function:

4-x2

EXERCISE 7.7 | Q 2. | Page 266

Integrate the function:

1-4x2

EXERCISE 7.7 | Q 3. | Page 266

Integrate the function:

x2+4x+6

EXERCISE 7.7 | Q 4. | Page 266

Integrate the function:

x2+4x+1

EXERCISE 7.7 | Q 5. | Page 266

Integrate the function:

1-4x-x2

EXERCISE 7.7 | Q 6. | Page 266

Integrate the function:

x2+4x-5

EXERCISE 7.7 | Q 7. | Page 266

Integrate the function:

1+3x-x2

EXERCISE 7.7 | Q 8. | Page 266

Integrate the function:

x2+3x

EXERCISE 7.7 | Q 9. | Page 266

Integrate the function:

1+x29

Choose the correct answer in Exercises 10 to 11.

EXERCISE 7.7 | Q 10. | Page 266

1+x2 dx is equal to ______.

  • x21+x2+12 log|(x+1+x2)|+C

  • 23(1+x2)32+C

  • 23 x(1+x2)32+C

  • x221+x2+12 x2 log|x+1+x2|+C

EXERCISE 7.7 | Q 11. | Page 266

x2-8x+7dx is equal to ______.

  • 12 (x-4)x2-8x+7+9log|x-4+x2-8x+7|+C

  • 12 (x+4)x2-8x+7+9log|x-4+x2-8x+7|+C

  • 12 (x-4)x2-8x+7+32 log|x-4+(x2-8x+7)|+C

  • 12 (x-4)x2-8x+7-92 log|x-4+x2-8x+7|+C

EXERCISE 7.8 [Pages 270 - 271]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.8 [Pages 270 - 271]

EXERCISE 7.8 | Q 1. | Page 270

Evaluate the definite integral:

-11(x+1)dx

EXERCISE 7.8 | Q 2. | Page 270

Evaluate the definite integral:

231xdx

EXERCISE 7.8 | Q 3. | Page 270

Evaluate the definite integral:

12(4x3-5x2+6x+9) dx

EXERCISE 7.8 | Q 4. | Page 270

Evaluate the definite integral:

0π4sin2xdx

EXERCISE 7.8 | Q 5. | Page 270

Evaluate the definite integral:

0π2cos2x dx

EXERCISE 7.8 | Q 6. | Page 270

Evaluate the definite integral:

45exdx

EXERCISE 7.8 | Q 7. | Page 270

Evaluate the definite integral:

0π4tanxdx

EXERCISE 7.8 | Q 8. | Page 270

Evaluate the definite integral:

π6π4cosecx dx

EXERCISE 7.8 | Q 9. | Page 270

Evaluate the definite integral:

01dx1-x2

EXERCISE 7.8 | Q 10. | Page 270

Evaluate the definite integral:

01dx1+x2

EXERCISE 7.8 | Q 11. | Page 270

Evaluate the definite integral:

23dxx2-1

EXERCISE 7.8 | Q 12. | Page 271

Evaluate the definite integral:

0π2cos2xdx

EXERCISE 7.8 | Q 13. | Page 271

Evaluate the definite integral:

23xdxx2+1

EXERCISE 7.8 | Q 14. | Page 271

Evaluate the definite integral:

012x+35x2+1dx

EXERCISE 7.8 | Q 15. | Page 271

Evaluate the definite integral:

01xex2dx

EXERCISE 7.8 | Q 16. | Page 271

Evaluate the definite integral:

125x2x2+4x+3

EXERCISE 7.8 | Q 17. | Page 271

Evaluate the definite integral:

0π4(2sec2x+x3 +2)dx

EXERCISE 7.8 | Q 18. | Page 271

Evaluate the definite integral:

0π(sin2 x2-cos2 x2)dx

EXERCISE 7.8 | Q 19. | Page 271

Evaluate the definite integral:

026x+3x2+4 dx

EXERCISE 7.8 | Q 20. | Page 271

Evaluate the definite integral:

01(xex+sin πx4)

Choose the correct answer in Exercises 21 and 22.

EXERCISE 7.8 | Q 21. | Page 271

13dx1+x2 equals:

  • π3

  • 2π3

  • π6

  • π12

EXERCISE 7.8 | Q 22. | Page 271

023dx4+9x2 equals:

  • π6

  • π12

  • π24

  • π4

EXERCISE 7.9 [Page 273]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.9 [Page 273]

EXERCISE 7.9 | Q 1. | Page 273

Evaluate the integral by using substitution.

01xx2+1dx

EXERCISE 7.9 | Q 2. | Page 273

Evaluate the integral by using substitution.

0π2sinϕcos5ϕdϕ

EXERCISE 7.9 | Q 3. | Page 273

Evaluate the integral by using substitution.

01sin-1(2x1+x2)dx

EXERCISE 7.9 | Q 4. | Page 273

Evaluate the integral by using substitution.

02xx+2  (Put x + 2 = t2)

EXERCISE 7.9 | Q 5. | Page 273

Evaluate the integral by using substitution.

0π2sinx1+cos2xdx

EXERCISE 7.9 | Q 6. | Page 273

Evaluate the integral by using substitution.

02dxx+4-x2

EXERCISE 7.9 | Q 7. | Page 273

Evaluate the integral by using substitution.

-11dxx2+2x +5

EXERCISE 7.9 | Q 8. | Page 273

Evaluate the integral by using substitution.

12(1x-12x2)e2xdx

Choose the correct answer in Exercises 9 and 10.

EXERCISE 7.9 | Q 9. | Page 273

The value of the integral 134(x-x3)13x4 dx is ______.

  • 6

  • 0

  • 3

  • 4

EXERCISE 7.9 | Q 10. | Page 273

If f(x)=0πtsin t dt, then f' (x) is ______.

  • cos x + x sin x

  • x sin x

  • x cos x

  • sin x + x cos x

EXERCISE 7.10 [Page 280]

NCERT solutions for Mathematics [English] Class 12 7 Integrals EXERCISE 7.10 [Page 280]

EXERCISE 7.10 | Q 1. | Page 280

By using the properties of the definite integral, evaluate the integral:

0π2cos2xdx

EXERCISE 7.10 | Q 2. | Page 280

By using the properties of the definite integral, evaluate the integral:

0π2 sinxsinx+cosxdx 

EXERCISE 7.10 | Q 3. | Page 280

By using the properties of the definite integral, evaluate the integral:

0π2sin32xsin32x+cos32xdx

EXERCISE 7.10 | Q 4. | Page 280

By using the properties of the definite integral, evaluate the integral:

0π2 cos5 xdxsin5x+cos5x

EXERCISE 7.10 | Q 5. | Page 280

By using the properties of the definite integral, evaluate the integral:

-55|x+2|dx

EXERCISE 7.10 | Q 6. | Page 280

By using the properties of the definite integral, evaluate the integral:

28|x-5|dx

EXERCISE 7.10 | Q 7. | Page 280

By using the properties of the definite integral, evaluate the integral:

01x(1-x)ndx

EXERCISE 7.10 | Q 8. | Page 280

By using the properties of the definite integral, evaluate the integral:

0π4log(1+tanx)dx

EXERCISE 7.10 | Q 9. | Page 280

By using the properties of the definite integral, evaluate the integral:

02x2-xdx

EXERCISE 7.10 | Q 10. | Page 280

By using the properties of the definite integral, evaluate the integral:

0π2(2logsinx-logsin2x)dx

EXERCISE 7.10 | Q 11. | Page 280

By using the properties of the definite integral, evaluate the integral:

-π2π2sin2x dx

EXERCISE 7.10 | Q 12. | Page 280

By using the properties of the definite integral, evaluate the integral:

0πx dx1+sinx

EXERCISE 7.10 | Q 13. | Page 280

By using the properties of the definite integral, evaluate the integral:

π2π2sin7xdx

EXERCISE 7.10 | Q 14. | Page 280

By using the properties of the definite integral, evaluate the integral:

02xcos5xdx

EXERCISE 7.10 | Q 15. | Page 280

By using the properties of the definite integral, evaluate the integral:

0π2sinx-cosx1+sinxcosxdx

EXERCISE 7.10 | Q 16. | Page 280

By using the properties of the definite integral, evaluate the integral:

0πlog(1+cosx)dx

EXERCISE 7.10 | Q 17. | Page 280

By using the properties of the definite integral, evaluate the integral:

0a xx +a-x  dx

EXERCISE 7.10 | Q 18. | Page 280

By using the properties of the definite integral, evaluate the integral:

04|x-1|dx

EXERCISE 7.10 | Q 19. | Page 280

Show that 0af(x)g(x)dx=20af(x)dx  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.

Choose the correct answer in Exercises 20 and 21.

EXERCISE 7.10 | Q 20. | Page 280

-π2π2(x3+xcosx+tan5x+1)dx is ______.

  • 0

  • 2

  • π

  • 1

EXERCISE 7.10 | Q 21. | Page 280

The value of 0π2log (4+3sinx4+3cosx) dx is ______.

  • 2

  • 34

  • 0

  • - 2

Miscellaneous Exercise [Pages 285 - 287]

NCERT solutions for Mathematics [English] Class 12 7 Integrals Miscellaneous Exercise [Pages 285 - 287]

Miscellaneous Exercise | Q 1. | Page 285

Integrate the function:

1x-x3

Miscellaneous Exercise | Q 2. | Page 285

Integrate the function:

1x+a+x+b

Miscellaneous Exercise | Q 3. | Page 285

Integrate the function:

1xax-x2[Hint : Put x=at]

Miscellaneous Exercise | Q 4. | Page 285

Integrate the function:

1x2(x4+1)34

Miscellaneous Exercise | Q 5. | Page 285

Integrate the function: 

1x12+x13 [Hint:1x12+x13=1x13(1+x16), put x=t6]

Miscellaneous Exercise | Q 6. | Page 285

Integrate the function:

5x(x+1)(x2+9)

Miscellaneous Exercise | Q 7. | Page 285

Integrate the function:

sinxsin(x-a)

Miscellaneous Exercise | Q 8. | Page 285

Integrate the function:

e5logx- e4logxe3logx-e2logx

Miscellaneous Exercise | Q 9. | Page 285

Integrate the function:

cosx4-sin2x

Miscellaneous Exercise | Q 10. | Page 285

Integrate the function:

sin8x-cos8x1-2sin2xcos2x

Miscellaneous Exercise | Q 11. | Page 285

Integrate the function:

1cos(x+a)cos(x+b)

Miscellaneous Exercise | Q 12. | Page 285

Integrate the function:

x31-x8

Miscellaneous Exercise | Q 13. | Page 285

Integrate the function:

ex(1+ex)(2+ex)

Miscellaneous Exercise | Q 14. | Page 285

Integrate the function:

1(x2+1)(x2+4)

Miscellaneous Exercise | Q 15. | Page 285

Integrate the function:

cos3xelogsinx

Miscellaneous Exercise | Q 16. | Page 285

Integrate the function:

e3logx(x4+1)-1

Miscellaneous Exercise | Q 17. | Page 285

Integrate the function:

f' (ax + b) [f (ax + b)]n

Miscellaneous Exercise | Q 18. | Page 286

Integrate the function:

1sin3xsin(x+α)

Miscellaneous Exercise | Q 19. | Page 286

Integrate the function:

1-x1+x

Miscellaneous Exercise | Q 20. | Page 286

Integrate the function:

2+sin2x1+cos2xex

Miscellaneous Exercise | Q 21. | Page 286

Integrate the function:

x2+x+1(x+1)2(x+2)

Miscellaneous Exercise | Q 22. | Page 286

Integrate the function:

tan-11-x1+x

Miscellaneous Exercise | Q 23. | Page 286

Integrate the function:

x2+1[log(x2+1)-2logx]x4

Miscellaneous Exercise | Q 24. | Page 286

Evaluate the definite integral:

π2πex(1-sinx1-cosx)dx

Miscellaneous Exercise | Q 25. | Page 286

Evaluate the definite integral:

0π4sinxcosxcos4x+sin4xdx

Miscellaneous Exercise | Q 26. | Page 286

Evaluate the definite integral:

0π2cos2xdxcos2x+4sin2x

Miscellaneous Exercise | Q 27. | Page 286

Evaluate the definite integral:

π6π3 sinx+cosxsin2xdx

Miscellaneous Exercise | Q 28. | Page 286

Evaluate the definite integral:

01dx1+x-x

Miscellaneous Exercise | Q 29. | Page 286

Evaluate the definite integral:

0π4sinx+ cosx9+16sin2xdx

Miscellaneous Exercise | Q 30. | Page 286

Evaluate the definite integral:

0π2sin2xtan-1(sinx)dx

Miscellaneous Exercise | Q 31. | Page 286

Evaluate the definite integral:

14[|x-1|+|x-2|+|x-3|]dx

Miscellaneous Exercise | Q 32. | Page 286

Prove the following:

13dxx2(x+1)=23+log 23

Miscellaneous Exercise | Q 33. | Page 286

Prove the following:

01xexdx=1

Miscellaneous Exercise | Q 34. | Page 286

Prove the following:

-11x17cos4xdx=0

Miscellaneous Exercise | Q 35. | Page 286

Prove the following:

0π2sin3xdx=23

Miscellaneous Exercise | Q 36. | Page 286

Prove the following:

0π42tan3xdx=1-log2

Miscellaneous Exercise | Q 37. | Page 286

Prove the following:

01sin-1xdx=π2-1

Choose the correct answers in Exercises 38 to 40.

Miscellaneous Exercise | Q 38. | Page 286

dxex+e-x is equal to ______.

  • tan-1(ex) + C

  • tan-1(e-x) + C

  • log (ex – e-x) + C

  • log (ex + e-x) + C

Miscellaneous Exercise | Q 39. | Page 286

cos2x(sinx+cosx)2dx is equal to ______.

  • -1sinx+cosx+C

  • log |sin x + cos x| + C

  • log |sin x - cos x| + C

  • 1(sinx+cosx)2

Miscellaneous Exercise | Q 40. | Page 287

If f (a + b - x) = f (x), then abxf(x)dx is equal to ______.

  • a+b2abf(b-x) dx

  • a+b2abf(b+x) dx

  • b-a2abf(x) dx

  • a+b2abf(x) dx

Solutions for 7: Integrals

EXERCISE 7.1EXERCISE 7.2EXERCISE 7.3EXERCISE 7.4EXERCISE 7.5EXERCISE 7.6EXERCISE 7.7EXERCISE 7.8EXERCISE 7.9EXERCISE 7.10Miscellaneous Exercise
NCERT solutions for Mathematics [English] Class 12 chapter 7 - Integrals - Shaalaa.com

NCERT solutions for Mathematics [English] Class 12 chapter 7 - Integrals

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 7 (Integrals) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 12 chapter 7 Integrals are Definite Integrals, Integrals of Some Particular Functions, Some Properties of Indefinite Integral, Integration Using Trigonometric Identities, Introduction of Integrals, Evaluation of Definite Integrals by Substitution, Properties of Definite Integrals, Methods of Integration: Integration by Substitution, Integration as an Inverse Process of Differentiation, Geometrical Interpretation of Indefinite Integrals, Methods of Integration: Integration Using Partial Fractions, Methods of Integration: Integration by Parts, Fundamental Theorem of Calculus, Indefinite Integral Problems, Comparison Between Differentiation and Integration, Indefinite Integral by Inspection, Definite Integral as the Limit of a Sum, Evaluation of Simple Integrals of the Following Types and Problems, Definite Integrals, Integrals of Some Particular Functions, Some Properties of Indefinite Integral, Integration Using Trigonometric Identities, Introduction of Integrals, Evaluation of Definite Integrals by Substitution, Properties of Definite Integrals, Methods of Integration: Integration by Substitution, Integration as an Inverse Process of Differentiation, Geometrical Interpretation of Indefinite Integrals, Methods of Integration: Integration Using Partial Fractions, Methods of Integration: Integration by Parts, Fundamental Theorem of Calculus, Indefinite Integral Problems, Comparison Between Differentiation and Integration, Indefinite Integral by Inspection, Definite Integral as the Limit of a Sum, Evaluation of Simple Integrals of the Following Types and Problems.

Using NCERT Mathematics [English] Class 12 solutions Integrals exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer NCERT Textbook Solutions to score more in exams.

Get the free view of Chapter 7, Integrals Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.