English

Integrate the rational function: x(x+1)(x+2) - Mathematics

Advertisements
Advertisements

Question

Integrate the rational function:

`x/((x + 1)(x+ 2))`

Sum

Solution

Let `x/((x + 1)(x + 2)) = A/(x + 1) + B/(x + 2)`

`=> x/((x + 1)(x + 2)) = (A(x + 2) + B(x + 1))/((x + 1)(x + 2))`

Put x = -1

-1 = A (-1 + 2) ⇒ -1 = A

⇒  A = -1

Put x = -2 

-2 = B (-2 + 1) ⇒ -2 = -B

⇒  B = 2

∴ `x/ ((x + 1) (x + 2)) = (-1)/ (x + 1) + 2/ (x + 2)`

∴ `I = int x/ ((x + 1) (x + 2)) dx`

`= int [(-1)/ (x + 1) + 2/ (x + 2)] dx`

`= int (-1)/ ((x + 1))  dx + int 2/ (x + 2)  dx`

= - log |x + 1| + 2 log |x + 2| + C

= - log |x + 1| + log |x + 2|2 + C

`= log |((x + 2)^2)/(x + 1)| + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.5 [Page 322]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.5 | Q 1 | Page 322

RELATED QUESTIONS

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


`int (xdx)/((x - 1)(x - 2))` equals:


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


`int "dx"/(("x" - 8)("x" + 7))`=


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^7/(1 + x^4)^2  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x sin2x cos5x  "d"x`


`int ("d"x)/(x^3 - 1)`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


`int 1/(x^2 + 1)^2 dx` = ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×