English

Verify the following using the concept of integration as an antiderivative dC∫x3dxx+1=x-x22+x33-log|x+1|+C - Mathematics

Advertisements
Advertisements

Question

Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`

Sum

Solution

`"d"/"dx"(x - x^2/2 + x^3/3 - log|x + 1| + "C")`

= `1 - (2x)/2 + (3x^2)/3 - 1/(x + 1)`

= `1 - x + x^2 - 1/(x + 1)`

= `x^3/(x + 1)`.

Thus `(x - x^2/2 + x^3/3 - log|x + 1| + "C") = intx^3/(x + 1) "d"x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 147]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 3 | Page 147
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×