Advertisements
Advertisements
Question
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
Solution
Let I = `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
Put log x = t
∴ `1/"x"` dx = dt
∴ I = `int (1 + "t")/((3 + "t")(2 + "3t"))` dt
Let `(1 + "t")/((3 + "t")(2 + "3t")) = "A"/("3 + t") + "B"/(2 + "3t")`
∴ 1 + t = A(2 + 3t) + B(3 + t) ...(i)
Putting t = – 3 in (i), we get
1 -3 = A(2 - 9) + B(0)
∴ - 2 = A (- 7)
∴ A = `2/7`
Putting t = `- 2/3` in (i), we get
`1 - 2/3 = "A"(0) + "B"(3 - 2/3)`
∴ `1/3 = "B"(7/3)`
∴ B = `1/7`
∴ `("1+t")/(("3 + t")("2 + 3t")) = (2/7)/("3 + t") + (1/7)/(2 + "3t")`
∴ I = `int ((2/7)/("3 + t") + (1/7)/("2 + 3t"))` dt
`= 2/7 int 1/(3+"t") "dt" + 1/7 int 1/(2 + "3t")` dt
`= 2/7 log |3 + "t"| + 1/7 * (log |2 + "3t"|)/3` + c
∴ I = `2/7 log |3 + log "x"| + 1/21 log |2 + 3 log "x"| + "c"`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(4x^2 - 20x + 17) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int xcos^3x "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`