Advertisements
Advertisements
Question
Find : `int x^2/(x^4+x^2-2) dx`
Solution
`int x^2/(x^4+x^2-2) dx`
`=int x^2/((x2-1)(x^2+2)) dx`
`therefore x^2/((x2-1)(x^2+2)) =z/((z-1)(z+2))`
Using partial fraction, we have
`z/((z-1)(z+2))=A/(z-1)+B/(z+2)`
When z=1, A=1/3
When z=−2, B=2/3
`therefore int x^2/((x2-1)(x^2+2)) dx`
`=int (1/3)/(x^2-1^2) dx +int (2/3 )/(x^2+2)dx`
`=1/2 int 1/(x^2-1^2) dx +2/3 int (1 )/(x^2+2)dx`
`=1/3 xx 1/2 log |(x-1)/(x+1)|+2/3 xx 1/sqrt2 tan^-1 (x/sqrt2)+c`
`=1/6 log|(x-1)/(x+1)|+sqrt2/3 tan^-1(x/sqrt2)+c`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
`int x^2sqrt("a"^2 - x^6) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sec^3x "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`