English

Find : ∫x2x4+x2−2dx - Mathematics

Advertisements
Advertisements

Question

Find : `int x^2/(x^4+x^2-2) dx`

Solution

`int x^2/(x^4+x^2-2) dx`

`=int x^2/((x2-1)(x^2+2)) dx`

`therefore x^2/((x2-1)(x^2+2)) =z/((z-1)(z+2))`

Using partial fraction, we have

`z/((z-1)(z+2))=A/(z-1)+B/(z+2)`

When z=1, A=1/3

When z=2, B=2/3

`therefore int x^2/((x2-1)(x^2+2)) dx`

`=int (1/3)/(x^2-1^2) dx +int (2/3 )/(x^2+2)dx`

`=1/2 int 1/(x^2-1^2) dx +2/3 int (1 )/(x^2+2)dx`

`=1/3 xx 1/2 log |(x-1)/(x+1)|+2/3 xx 1/sqrt2 tan^-1 (x/sqrt2)+c`

`=1/6 log|(x-1)/(x+1)|+sqrt2/3 tan^-1(x/sqrt2)+c`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

RELATED QUESTIONS

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int "dx"/(("x" - 8)("x" + 7))`=


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sec^3x  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


`int 1/(x^2 + 1)^2 dx` = ______.


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×