English

Evaluate ∫0(3/2) |x cosπx| dx - Mathematics

Advertisements
Advertisements

Question

 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Solution

`int_0^(3/2)|xcospix|dx`

`0<x<1/2`

`0<pix<pi/2rArrcospix>0rArr(xcospix)>0`

                                 `|xcospix|=xcospix`

`1/2<x<3/2`

`pi/2<pix<(3pi)/2rArrcospix<0rArr(xcospix)<0`

                               `|xcospix|=-xcospix`

`I=int_0^(3/2)|xcospix|dx=int_0^(3/2)xcospix+int_(1/2)^(3/2)-(xcospix)`

`I=int_0^(1/2)xcospix-int_(1/2)^(3/2)xcospix`

`intx(cospix)=x(sinpix)/pi-int(sinpix)/pi`

                  `=x/pi(sinpix)+(cospix)/pi^2`

`I=[(x/pisinpix)+(cospix)/pi^2]_0^(1/2)-[(x/pisinpix)+(cospix)/pi^2]_(1/2)^(3/2)`

`=[1/pi((1/2)-0)+1/pi^2(0-1)]-[1/pi(3/2(-1)-1/2(1))+1/pi^2(0-0)]`

`=(1/(2pi)-1/pi^2)-((-2)/pi)`

`=(5/(2pi)-1/pi^2)`

`=((5pi-2)/(2pi^2))`

 

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate : `int1/(3+5cosx)dx`


Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×