English

∫π−π (cos ax−sin bx)2 dx - Mathematics

Advertisements
Advertisements

Question

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`

Solution

 

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`

`=∫_(-pi)^pi(cos^2ax+sin^2bx-2cosaxsinbx)dx`

`=∫_(-pi)^picos^2axdx+∫_(-pi)^pisin^2bxdx-∫_(-pi)^pi2cosaxsinbxdx`

`=2∫_(0)^picos^2axdx+2∫_(0)^pisin^2bxdx-0` [ Since cos2ax and sin2bx are even functions and cosaxsinbx is an odd function.]

`=2∫_(0)^pi(1+cos2ax)/2dx+2∫_(0)^pi(1-cos2bx)/2dx`

`=∫_(0)^pi (1+cos2ax) dx+∫_(0)^pi (1−cos2bx) dx`

`=∫_(0)^pi(1+cos2ax+1−cos2bx)dx`

`=∫_(0)^pi(2+cos2ax−cos2bx)dx`

`=2[x]_0^pi +[(sin2ax)/(2a)]_0^pi−[(sin2bx)/(2b)]_0^pi`

`=2π+(sin2aπ)/(2a)−(sin2bπ)/(2b)`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×