English

Evaluate : 3 / 2 ∫ 0 | X Sin π X | D X - Mathematics

Advertisements
Advertisements

Question

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]
Sum

Solution

\[\text{For }0 < x < 1, x > 0\text{ and }\sin\pi x > 0 \Rightarrow x\sin\pi x > 0\]
\[\text{For }1 < x < \frac{3}{2}, x > 0\text{ and }\sin\pi x < 0 \Rightarrow x\sin\pi x < 0\]

\[\therefore \int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \int_0^1 x\sin\pi x dx - \int_1^\frac{3}{2} x\sin\pi x dx\]
\[Let I = \int x\sin\pi x dx\]
\[ = x\int \sin\pi x dx - \int\left( \frac{d}{dx}x\int \sin\pi x dx \right)dx\]
\[ = x\left( \frac{- \cos\pi x}{\pi} \right) - \int\left( \frac{- \cos\pi x}{\pi} \right)dx\]
\[= \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2}\]

Applying the limits, we get

\[\int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_0^1 - \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_1^\frac{3}{2} \]
\[ = \left[ \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) - \left( 0 + 0 \right) \right] - \left[ \left( \frac{- \frac{3}{2}\cos\frac{3\pi}{2}}{\pi} + \frac{\sin\frac{3\pi}{2}}{\pi^2} \right) - \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) \right]\]

\[= \left[ \left( \frac{1}{\pi} + 0 \right) \right] - \left[ \left( 0 - \frac{1}{\pi^2} \right) - \left( \frac{1}{\pi} + 0 \right) \right]\]
\[ = \frac{1}{\pi} + \frac{1}{\pi^2} + \frac{1}{\pi}\]
\[ = \frac{2}{\pi} + \frac{1}{\pi^2}\]
\[ = \frac{2\pi + 1}{\pi^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 42 | Page 95

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


`int_0^1 x^2e^x dx` = ______.


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×