Advertisements
Advertisements
Question
Evaluate `int_(-1)^2|x^3-x|dx`
Solution
Let:
`I=int_(-1)^2|x^3-x|dx`
f(x)=x3−x
f(x)=x3−x=x(x−1)(x+1)
The signs of f(x) for the different values are shown in the figure given below:
f(x)>0 for all x∈(−1,0)∪(1,2)
f(x)<0 for all x∈(0,1)
Therefore
`|x^3-x|={(x^3-x,","xepsilon"(-1,0)"UU"(1,2)"),(-(x^3-x),","xepsilon(0,1)):}`
`:.I=int_(-1)^2|x^3-x|dx`
`=int_(-1)^0|x^3-x|dx+int_0^1|x^3-x|dx+int_1^2|x^3-x|dx`
`=int_(-1)^0(x^3-x)dx-int_0^1(x^3-x)dx+int_1^2(x^3-x)dx`
`=[x^4/4-x^2/2]_(-1)^0+[x^4/4-x^2/2]_0^1+[x^4/4-x^2/2]_1^2`
`=-(1/4-1/2)-(1/4-1/2)+(16/4-4/4)-(1/4-1/2)`
`=3/4+(4-2)`
`=11/4`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Evaluate: `int x/(x^2 + 1)"d"x`