English

Evaluate ∫2−1 ∣x^3−x∣ dx - Mathematics

Advertisements
Advertisements

Question

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Solution

 

Let:

`I=int_(-1)^2|x^3-x|dx`

f(x)=x3x

f(x)=x3x=x(x1)(x+1)

The signs of f(x) for the different values are shown in the figure given below:

f(x)>0 for all x(1,0)(1,2)

f(x)<0 for all x(0,1)

Therefore

`|x^3-x|={(x^3-x,","xepsilon"(-1,0)"UU"(1,2)"),(-(x^3-x),","xepsilon(0,1)):}`

`:.I=int_(-1)^2|x^3-x|dx`

`=int_(-1)^0|x^3-x|dx+int_0^1|x^3-x|dx+int_1^2|x^3-x|dx`

`=int_(-1)^0(x^3-x)dx-int_0^1(x^3-x)dx+int_1^2(x^3-x)dx`

`=[x^4/4-x^2/2]_(-1)^0+[x^4/4-x^2/2]_0^1+[x^4/4-x^2/2]_1^2`

`=-(1/4-1/2)-(1/4-1/2)+(16/4-4/4)-(1/4-1/2)`

 `=3/4+(4-2)`

 `=11/4`

 
shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


`int_0^1 x(1 - x)^5 "dx" =` ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×