Advertisements
Advertisements
प्रश्न
Evaluate `int_(-1)^2|x^3-x|dx`
उत्तर
Let:
`I=int_(-1)^2|x^3-x|dx`
f(x)=x3−x
f(x)=x3−x=x(x−1)(x+1)
The signs of f(x) for the different values are shown in the figure given below:
f(x)>0 for all x∈(−1,0)∪(1,2)
f(x)<0 for all x∈(0,1)
Therefore
`|x^3-x|={(x^3-x,","xepsilon"(-1,0)"UU"(1,2)"),(-(x^3-x),","xepsilon(0,1)):}`
`:.I=int_(-1)^2|x^3-x|dx`
`=int_(-1)^0|x^3-x|dx+int_0^1|x^3-x|dx+int_1^2|x^3-x|dx`
`=int_(-1)^0(x^3-x)dx-int_0^1(x^3-x)dx+int_1^2(x^3-x)dx`
`=[x^4/4-x^2/2]_(-1)^0+[x^4/4-x^2/2]_0^1+[x^4/4-x^2/2]_1^2`
`=-(1/4-1/2)-(1/4-1/2)+(16/4-4/4)-(1/4-1/2)`
`=3/4+(4-2)`
`=11/4`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is