Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I }=\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx...................\left(1\right)\]
Then,
\[I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}}{\sqrt{\sin\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)} + \sqrt{\cos\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}}dx ...................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin\left( \frac{\pi}{2} - x \right)}}{\sqrt{\sin\left( \frac{\pi}{2} - x \right)} + \sqrt{\cos\left( \frac{\pi}{2} - x \right)}}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}}dx . . . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]
\[ \Rightarrow 2I = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}\]
\[ \Rightarrow I = \frac{\pi}{12}\]
APPEARS IN
संबंधित प्रश्न
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`