Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I} = \int_{- a}^a \frac{1}{1 + a^x}dx................\left(1\right)\]
\[I = \int_{- a}^a \frac{1}{1 + a^\left[ a + \left( - a \right) - x \right]}dx\]
\[ = \int_{- a}^a \frac{1}{1 + a^{- x}}dx\]
\[ = \int_{- a}^a \frac{a^x}{a^x + 1}dx ..................\left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- a}^a \frac{1 + a^x}{1 + a^x}dx\]
\[ \Rightarrow 2I = \int_{- a}^a dx\]
\[ \Rightarrow 2I = \left.x\right|_{- a}^a \]
\[ \Rightarrow 2I = a - \left( - a \right) = 2a\]
\[ \Rightarrow I = a\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
`int_0^1 x^2e^x dx` = ______.