Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
उत्तर
Let I = `int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
= `int ("e"^(log x^6) - "e"^(log x^5))/("e"^(logx^4) - "e"^(log x^3)) "d"x` .....[∵ a log b – log ba]
= `int (x^6 - x^5)/(x^4 - x^3) "d"x` .....[∵ elogx = x]
= `int (x^3 - x^2)/(x - 1) "d"x`
= `int (x^2(x - 1))/(x - 1) "d"x`
= `int x^2 "d"x`
= `x^3/3 + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int x/(x^2 + 1)"d"x`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.