Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} = \int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx.....................(1)\]
Then,
\[ = \int_0^\frac{\pi}{2} \frac{\cot^7 x}{\cot^7 x + \tan^7 x}dx .................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\frac{\pi}{2} \frac{\tan^7 x + \cot^7 x}{\tan^7 x + \cot^7 x}dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} dx\]
\[ \Rightarrow 2I = \left.x\right|_0^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{\pi}{2} - 0 = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate :
Evaluate the following definite integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`