Advertisements
Advertisements
प्रश्न
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
उत्तर
`∫_0^π(4x sin x)/(1+cos^2 x) dx..................(1)`
Using f (x) = f (a−x), we get:
`I=∫_0^π(4(pi-x) sin x)/(1+cos^2 x) dx .....................(2)`
Adding (1) and (2), we get:
`2I=4int_0^pi(pi sinx)/(1+cos^2x)dx`
`I=2int_0^pi(pi sinx)/(1+cos^2x)dx`
Let cos x=t.
⇒−sin xdx=dt
`⇒I=2π∫_1^(−1)−1/(1+t^2)dt`
`=>I=-2pi tan^(-1) t_1^(-1)`
`=>I=-2pi(-pi/4-pi/4)`
`=>I=pi^2`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is