Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_2^8 \left| x - 5 \right| d x\]
\[\text{We know that}, \left| x - 5 \right| = \begin{cases} - \left( x - 5 \right) &,& 2 \leq x \leq 5\\x - 5&,& 5 < x \leq 8\end{cases}\]
\[ \therefore I = \int_2^8 \left| x - 5 \right| d x\]
\[ \Rightarrow I = \int_2^5 - \left( x - 5 \right) dx + \int_5^8 \left( x - 5 \right) dx\]
\[ \Rightarrow I = - \left[ \frac{x^2}{2} - 5x \right]_2^5 + \left[ \frac{x^2}{2} - 5x \right]_5^8 \]
\[ \Rightarrow I = \frac{- 25}{2} + 25 + 2 - 10 + 32 - 40 - \frac{25}{2} + 25\]
\[ \Rightarrow I = 9\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.