Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} = \int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
\[= \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx + \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
\[ = I_1 + I_2\]
Consider
\[f\left( - x \right) = \int_{- 2}^2 \frac{3 \left( - x \right)^3}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{- 3 x^3}{x^2 + \left| x \right| + 1}dx = - \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = - f\left( x \right)\]
\[\therefore I_1 = \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = 0 ......................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
Now, consider
\[g\left( - x \right) = \int_{- 2}^2 \frac{2\left| - x \right| + 1}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx = g\left( x \right)\]
\[\therefore I_2 = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx \]
\[ = 2 \int_0^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx ..................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 2 \int_0^2 \frac{2x + 1}{x^2 + x + 1}dx .................\left[ \left| x \right| = \begin{cases}x, & x \geq 0 \\ - x, & x < 0\end{cases} \right]\]
\[ = \left.2 \times \log\left( x^2 + x + 1 \right)\right|_0^2 ....................\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = 2 \times \left( \log7 - \log1 \right)\]
\[ = 2 \times \left( \log7 - 0 \right)\]
\[ = 2\log7\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.