मराठी

Evaluate the Following Integral: ∫ 2 − 2 3 X 3 + 2 | X | + 1 X 2 + | X | + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
बेरीज

उत्तर

\[\text{Let I} = \int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

\[= \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx + \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
\[ = I_1 + I_2\]

Consider

\[f\left( x \right) = \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx\]

\[f\left( - x \right) = \int_{- 2}^2 \frac{3 \left( - x \right)^3}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{- 3 x^3}{x^2 + \left| x \right| + 1}dx = - \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = - f\left( x \right)\]

\[\therefore I_1 = \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = 0 ......................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]

Now, consider

\[g\left( x \right) = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

\[g\left( - x \right) = \int_{- 2}^2 \frac{2\left| - x \right| + 1}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx = g\left( x \right)\]

\[\therefore I_2 = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx \]
\[ = 2 \int_0^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx ..................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 2 \int_0^2 \frac{2x + 1}{x^2 + x + 1}dx .................\left[ \left| x \right| = \begin{cases}x, & x \geq 0 \\ - x, & x < 0\end{cases} \right]\]
\[ = \left.2 \times \log\left( x^2 + x + 1 \right)\right|_0^2 ....................\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = 2 \times \left( \log7 - \log1 \right)\]
\[ = 2 \times \left( \log7 - 0 \right)\]
\[ = 2\log7\]

\[\therefore I = I_1 + I_2 = 0 + 2\log7 = 2\log7\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 31 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×