Advertisements
Advertisements
प्रश्न
Evaluate:
उत्तर
\[\int\left( \frac{2 \cos^2 x - \cos 2x}{\cos^2 x} \right)dx\]
\[ = \int\left( \frac{2 \cos^2 x - \left( 2 \cos^2 x - 1 \right)}{\cos^2 x} \right)dx \left[ \because \cos 2x = 2 \cos^2 x - 1 \right]\]
\[ = \int \sec^2\text{ x dx}\]
\[ = \ \text{tan x} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate :
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Find: `int (dx)/sqrt(3 - 2x - x^2)`