Advertisements
Advertisements
प्रश्न
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
उत्तर
= `int_1^5 {| x - 1| + | x - 2| + |x - 3|} dx`
= `int_1^5 (x - 1)dx + int_1^2 (2 - x)dx + int_2^5 (x - 2) dx + int_1^3 (3 - x) dx + int_3^5 ( x - 3) dx`
= `[x^2/2 - x]_1^5 + [2x - x^2/2]_1^2 + [x^2/2 - 2x]_2^5 + [3x - x^2/2]_1^3 + [x^2/3 - 3x]_3^5`
= 17
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_0^1 x(1 - x)^5 "dx" =` ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`