मराठी

Evaluate the Following Integral: ∫ π 0 ( X 1 + Sin 2 X + Cos 7 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]
बेरीज

उत्तर

\[\text{Let I }=\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx ..................(1)\]

Then,

\[I = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 \left( \pi - x \right)} + \cos^7 \left( \pi - x \right) \right)dx\]
\[ = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx ..................(2)\]

Adding (1) and (2), we get

\[2I = \int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x + \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{1}{1 + \sin^2 x}dx\]

Dividing the numerator and denominator by cos2x, we get

\[2I = \pi \int_0^\pi \frac{\sec^2 x}{\sec^2 x + \tan^2 x}dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{\sec^2 x}{1 + 2 \tan^2 x}dx\]
\[ \Rightarrow 2I = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{1 + 2 \tan^2 x}dx .....................\left[ \int_0^{2a} f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( 2a - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( 2a - x \right) = - f\left( x \right)\end{cases} \right]\]

Put tan x = z

Then

\[\sec^2 xdx = dz\]

When

\[x \to 0, z \to 0\]

When

\[x \to \frac{\pi}{2}, z \to \infty\]

\[\therefore 2I = 2\pi \int_0^\infty \frac{dz}{1 + \left( \sqrt{2}z \right)^2}\]
\[ \Rightarrow 2I = \left.2\pi \times \frac{\tan^{- 1} \sqrt{2}z}{\sqrt{2}}\right|_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}} \times \left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi^2}{2\sqrt{2}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 36 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×