Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I }=\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx ..................(1)\]
Then,
\[I = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 \left( \pi - x \right)} + \cos^7 \left( \pi - x \right) \right)dx\]
\[ = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx ..................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x + \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{1}{1 + \sin^2 x}dx\]
Dividing the numerator and denominator by cos2x, we get
\[2I = \pi \int_0^\pi \frac{\sec^2 x}{\sec^2 x + \tan^2 x}dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{\sec^2 x}{1 + 2 \tan^2 x}dx\]
\[ \Rightarrow 2I = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{1 + 2 \tan^2 x}dx .....................\left[ \int_0^{2a} f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( 2a - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( 2a - x \right) = - f\left( x \right)\end{cases} \right]\]
Put tan x = z
Then
When
When
\[\therefore 2I = 2\pi \int_0^\infty \frac{dz}{1 + \left( \sqrt{2}z \right)^2}\]
\[ \Rightarrow 2I = \left.2\pi \times \frac{\tan^{- 1} \sqrt{2}z}{\sqrt{2}}\right|_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}} \times \left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi^2}{2\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`